Advanced Materials for Thin‐Film Solid Oxide Fuel Cells: Recent Progress and Challenges in Boosting the Device Performance at Low Temperatures
نویسندگان
چکیده
Abstract Solid oxide fuel cells (SOFCs) are efficient and flexible electrochemical energy conversion devices that can power the future green society with regards to homes, cars, even down portable electronics. They do have potential become low cost, since no noble metals used. Their broad commercialization, however, is hampered by high operating temperatures of 700–900 ° C. Lowering temperature SOFCs challenging as both charge transport in solid electrolyte oxygen exchange reactions thermally activated processes. Herein, recent progress development anode, electrolyte, cathode materials lower SOFC below 600 C summarized new opportunities, well challenges remain be solved, discussed. The focus this review addressed thin film SOFCs, sub‐micrometer ( μ SOFCs) based on microelectromechanical systems, proton‐conducting (protonic ceramic cells), which especially promising for powering devices.
منابع مشابه
Materials for Solid Oxide Fuel Cells
Solid oxide fuel cells (SOFCs) have the promise to improve energy efficiency and to provide society with a clean energy producing technology. The high temperature of operation (500-1000 C) enables the solid oxide fuel cell to operate with existing fossil fuels and to be efficiently coupled with turbines to give very high efficiency conversion of fuels to electricity. Solid oxide fuel cells are ...
متن کاملInvestigation the performance of solid oxide fuel cells and the role of nanotechnology in its construction
Nanotechnology is well used in the development and performance improvement of solid oxide fuel cells (SOFCs). The high operating temperature of SOFCs (700-900 ° C) has led to serious shortcomings in their overall performance and durability. Hence, the high operating temperature has been reduced to the average temperature range of approximately 44-700 Celsius, which has improved performance and ...
متن کاملChemical precipitation and characterization of multicomponent Perovskite Oxide nanoparticles – possible cathode materials for low temperature solid Oxide fuel cell
A set of multicomponent perovskite oxide nanoparticles based on La1-xSrxCo1-yFeyO3-δ(LSCF) were prepared by a simple chemical precipitation method for application in low temperature solid oxide fuel cells (LT-SOFC) as cathode materials. The precursor materials used in this synthesis were lanthanum nitrate hexahydrate [La(NO3)<su...
متن کاملChemical precipitation and characterization of multicomponent Perovskite Oxide nanoparticles – possible cathode materials for low temperature solid Oxide fuel cell
A set of multicomponent perovskite oxide nanoparticles based on La1-xSrxCo1-yFeyO3-δ(LSCF) were prepared by a simple chemical precipitation method for application in low temperature solid oxide fuel cells (LT-SOFC) as cathode materials. The precursor materials used in this synthesis were lanthanum nitrate hexahydrate [La(NO3)<su...
متن کاملElectrochemically Deposited Ceria Structures for Advanced Solid Oxide Fuel Cells
As the pursuit towards emissions reduction intensifies with growing interest and nascent technologies, solid oxide fuel cells (SOFCs) remain an illustrious candidate for achieving our goals. Despite myriad advantages, SOFCs are still too costly for widespread deployment, even as unprecedented materials developments have recently emerged. This suggests that, in addition to informed materials sel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Functional Materials
سال: 2022
ISSN: ['1616-301X', '1616-3028']
DOI: https://doi.org/10.1002/adfm.202111205